quarta-feira, 16 de dezembro de 2009

ciencias

matéria e energia
Matéria
Matéria é tudo o que tem massa e ocupa um lugar no espaço, ou seja, possui volume.Ex.: madeira, ferro, água, areia, ar, ouro e tudo o mais que imaginemos, dentro da definição acima.
Obs.: a ausência total de matéria é o vácuo.
Corpo
Corpo é qualquer porção limitada de matéria.Ex.: tábua de madeira, barra de ferro, cubo de gelo, pedra.
Objeto
Objeto é um corpo fabricado ou elaborado para ter aplicações úteis ao homem.Ex.: mesa, lápis, estátua, cadeira, faca, martelo.
Energia
Energia é a capacidade de realizar trabalho, é tudo o que pode modificar a matéria, por exemplo, na sua posição, fase de agregação, natureza química. È também tudo que pode provocar ou anular movimentos e causar deformações.
Formas de Energia
Energia Cinética
Energia cinética é a energia associada ao movimento e depende da massa (m) e da velocidade (v) de um corpo.
É calculada pela expressão:
E = m.v2 2
Energia Potencial
É aquela que se encontra armazenada num determinado sistema e que pode ser utilizada a qualquer momento para realizar uma tarefa.
Existem dois tipos de energia potencial: a elástica e a gravitacional.
A energia potencial gravitacional está relacionada com uma altura (h) de um corpo em relação a um determinado nível de referência.
É calculada pela expressão: Epg = p.h ou Epg = m.g.h
A energia potencial elástica está associada a uma mola ou a um corpo elástico.
É calculada pela expressão: Epe = k.x22
K= Constante da mola (varia para cada tipo de mola, por exemplo a constante da mola de um espiral de caderno é bem menor que a constante da mola de um amortecedor de caminhão)
X= Variação no tamanho da mola
Energia MecÂNica Total
A energia mecânica total de um corpo é constante e é dada pela soma das energias cinética e potencial.
É calculada pela expressão: Em = Ec + Ep
Obs.: No Sistema Internacional de Unidades (SI), a energia é expressa em joule (J).
Obs II.: Existem outra formas de energia: energia elétrica, térmica, luminosa, química, nuclear, magnética, solar (radiante).
Lei da Conservação da Energia
A energias não pode ser criada nem destruída. Sempre que desaparece uma quantidade de uma classe de energia, uma quantidade exatamente igual de outra(s) classe(s) de energia é (são) produzida(s).
Classificação dos Sistemas
A partir das noções de matéria e energia, podemos classificar os sistemas em função da sua capacidade de trocar matéria e energia com o meio ambiente.
Sistema Aberto
Tem a capacidade de trocar tanto matéria quanto energia com o meio ambiente.Ex.: água em um recipiente aberto (a água absorve a energia térmica do meio ambiente e parte dessa água sofre evaporação).
Sistema Fechado
Tem a capacidade de trocar somente energia com o meio ambiente. Esse sistema pode ser aquecido ou resfriado, mas a sua quantidade de matéria não varia.Ex.: Um refrigerante fechado.
Sistema Isolado
Não troca matéria nem energia com o sistema.
Obs.: a rigor não existe um sistema completamente isolado.
Ex.: um exemplo aproximado desse tipo de sistema é a garrafa térmica.
Propriedades da Matéria
Propriedades são determinadas características que, em conjunto, vão definir a espécie de matéria.
Podemos dividi-las em 3 grupos: gerais, funcionais e específicas.
Propriedades Gerais
São propriedades inerentes a toda espécie de matéria.
Massa: é a medida da quantidade de matéria.
Obs.: é importante saber a diferença entre massa e peso. O peso de um corpo é a força de atração gravitacional sofrida pelo mesmo, ou seja, é a força de atração que o centro da terra exerce sobre a massa dos corpos. O peso de um corpo irá varia em função da posição que ele assumir em relação ao centro da terra, enquanto a massa é uma medida invariável em qualquer local. Em Química trabalhamos preferencialmente com massa.
Extensão: é o espaço que a matéria ocupa, o seu volume.
Inércia: é a propriedade que os corpos têm de manter o seu estado de movimento ou de repouso inalterado, a menos que alguma força interfira e modifique esse estado.
Obs.: a massa de um corpo está associada à sua inércia, isto é, a dificuldade de fazer variar o seu estado de movimento ou de repouso, portanto, podemos definir massa como a medida da inércia.
Impenetrabilidade: duas porções de matéria não podem ocupar, simultaneamente, o mesmo lugar no espaço.
Divisibilidade: toda matéria pode ser dividida sem alterar a sua constituição, até um certo limite ao qual chamamos de átomo.
Compressibilidade: sob a ação de forças externas, o volume ocupado por uma porção de matéria pode diminuir.
Obs.: de uma maneira geral os gases são mais compressíveis que os líquidos e estes por sua vez são mais compressíveis que os sólidos.
Elasticidade: Dentro de um certo limite, se a ação de uma força causar deformação da matéria, ela retornará à forma original assim que essa força deixar de agir.
Porosidade: a matéria é descontínua. Isso quer dizer que existem espaços (poros) entre as partículas que formam qualquer tipo de matéria. Esses espaços podem ser maiores ou menores, tornando a matéria mais ou menos densa.
Ex.: a cortiça apresenta poros maiores que os poros do ferro, logo a densidade da cortiça é bem menor que a densidade do ferro.
Propriedades Funcionais
São propriedades comuns a determinados grupos de matéria, identificados pela função que desempenham.Ex.: ácidos, bases, sais, óxidos, álcoois, aldeídos, cetonas.
Propriedades Específicas
São propriedades individuais de cada tipo particular de matéria.
Podem ser: organolépticas, químicas ou físicas.
I- Organolépticas
São propriedades capazes de impressionar os nossos sentidos, como a cor, que impressiona a visão, o sabor, que impressiona o paladar, o odor que impressiona o nosso olfato e a fase de agregação da matéria (sólido, líquido, gasoso, pastoso, pó), que impressiona o tato.
Ex.: água pura (incolor, insípida, inodora, líquida em temperatura ambiente)
barra de ferro (brilho metálico, sólida)
II - Químicas
Responsáveis pelos tipos de transformação que cada matéria é capaz de sofrer. Relacionam-se à maneira de reagir de cada substância.
Ex.: oxidação do ferro, combustão do etanol.
III - Físicas
São certos valores encontrados experimentalmente para o comportamento de cada tipo de matéria quando submetidas a determinadas condições. Essas condições não alteram a constituição da matéria, por mais diversas que sejam. As principais propriedades físicas da matéria são:
Pontos de fusão e solidificação
São as temperaturas nas quais a matéria passa da fase sólida para a fase líquida e da fase líquida para a sólida respectivamente, sempre em relação a uma determinada pressão atmosférica.
Obs.: a pressão atmosférica (pressão exercida pelo ar atmosférico) quando ocorre a 0° C, ao nível do mar e a 45° de latitude, recebe o nome de pressão normal, à qual se atribuiu, convencionalmente, o valor de 1 atm.
Ex.: água 0° C; oxigênio -218,7° C; fósforo branco 44,1° C
Ponto de fusão normal: é a temperatura na qual a substância passa da fase sólida para a fase líquida, sob pressão de 1atm. Durante a fusão propriamente dita, coexistem essas duas fases. Por isso, o ponto de solidificação normal de uma substância coincide com o seu ponto de fusão normal.
Pontos de ebulição e condensação
São as temperaturas nas quais a matéria passa da fase líquida para a fase gasosa e da fase gasosa para a líquida respectivamente, sempre em relação a uma determinada pressão atmosférica.
Ex.: água 100° C; oxigênio -182,8° C; fósforo branco 280° C.
Ponto de ebulição normal: é a temperatura na qual a substância passa da fase líquida à fase gasosa, sob pressão de 1 atm. Durante a ebulição propriamente dita, coexistem essas duas fases. Por isso, o ponto de condensação normal de uma substância coincide com o seu ponto de ebulição normal.
Densidade
é a relação entre a massa e o volume ocupado pela matéria.
Ex.: água 1,00 g/cm3; ferro 7,87 g/cm3.
Coeficiente de solubilidade
É a quantidade máxima de uma matéria capaz de se dissolver totalmente em uma porção padrão de outra matéria (100g, 1000g), numa temperatura determinada.
Ex.: Cs KNO3 = 20,9g/100g de H2O (10° c)
Cs KNO3 = 31,6g/100g de H2O (20° c)
Cs Ce2(SO4)3 = 20,0g/100g DE H2O (0° c)
Cs Ce2(SO4)3 = 10,0g/100g DE H2O (25° c)
Dureza
É a resistência que a matéria apresenta ao ser riscada por outra. Quanto maior a resistência ao risco mais dura é a matéria.
Entre duas espécies de matéria, X e Y, decidimos qual é a de maior dureza pela capacidade que uma apresenta de riscar a outra. A espécie de maior dureza, X, Risca a de menor dureza, Y. Podemos observar esse fato, porque sobre a matéria X, mais dura, fica um traço da matéria Y, de menor dureza.
SUBSTÂNCIA
DUREZA
SUBSTÂNCIA
DUREZA
TALCO
01
FELDSPATO
06
GIPSITA
02
QUARTZO
07
CALCITA
03
TOPÁZIO
08
FLUORITA
04
CORÍNDON
09
APATITA
05
DIAMANTE
10

Tenacidade
É a resistência que a matéria apresenta ao choque mecânico, isto é, ao impacto. Dizemos que um material é tenaz quando ele resiste a um forte impacto sem se quebrar.
Observe que o fato de um material ser duro não garante que ele seja tenaz; são duas propriedades distintas. Por exemplo: o diamante, considerado o material mais duro que existe, ao sofrer um forte impacto quebra-se totalmente.
Brilho
É a capacidade que a matéria possui de refletir a luz que incide sobre ela. Quando a matéria não reflete luz, ou reflete muito pouco, dizemos que ela não tem brilho. Uma matéria que não possui brilho, não é necessariamente opaca e vice-versa. Matéria opaca é simplesmente aquela que não se deixa atravessar pela luz. Assim, uma barra de ouro é brilhante e opaca, pois reflete a luz sem se deixar atravessar por ela.
AS FASES DE AGREGAÇÃO DAS SUBSTÂNCIAS
Fase Sólida
A característica da fase sólida é a rigidez. As substâncias apresentam maior organização de suas partículas constituintes, devido a possuir menor energia. Essas partículas formam estruturas geométricas chamada retículos cristalinos. Apresenta forma invariável e volume constante.
Fase Líquida
A característica da fase líquida é a fluidez. As partículas se apresentam desordenadas e com certa liberdade de movimento. Apresentam energia intermediária entre as fases sólida e gasosa. Possuem forma variável e volume constante.
Fase Gasosa
A característica da fase gasosa é o caos. Existem grandes espaços entre as partículas, que apresentam grande liberdade de movimento. É a fase que apresenta maior energia. Apresenta forma e volume variáveis.
Mudanças De Fases Das Substâncias
O estado de agregação da matéria pode ser alterado por variações de temperatura e de pressão, sem que seja alterada a composição da matéria. Cada uma destas mudanças de estado recebeu uma denominação particular:
Fusão: é a passagem da fase sólida para a líquida.
Vaporização: é a passagem do estado líquido para o estado gasoso.
Obs.: a vaporização pode receber outros nomes, dependendo das condições em que o líquido se transforma em vapor.
Evaporação: é a passagem lenta do estado líquido para o estado de vapor, que ocorre predominantemente na superfície do líquido, sem causar agitação ou o surgimento de bolhas no seu interior. Por isso, é um fenômeno de difícil visualização.
Ex.: bacia com água em um determinado local, roupas no varal.
Ebulição: é a passagem rápida do estado líquido para o estado de vapor, geralmente obtida pelo aquecimento do líquido e percebida devido à ocorrência de bolhas.
Ex.: fervura da água para preparação do café.
Calefação: é a passagem muito rápida do estado líquido para o estado de vapor, quando o líquido se aproxima de uma superfície muito quente.
Ex.: Gotas de água caindo sobre uma frigideira quente.
Sublimação: é a passagem do estado sólido diretamente para o estado gasoso e vice-versa.
Obs.: alguns autores chamam de ressublimação a passagem do estado de vapor para o estado sólido.
Liquefação ou condensação: é a passagem do estado gasoso para o estado líquido.
Solidificação: é a passagem do estado líquido para o estado sólido.
Observe o esquema abaixo:
Diferença Entre Gás e Vapor
Vapor: Designação dada à matéria no estado gasoso, quando é capaz de existir em equilíbrio com o líquido ou com o sólido correspondente, podendo sofrer liquefação pelo simples abaixamento de temperatura ou aumento da pressão.
Gás: Fluido, elástico, impossível de ser liqüefeito só por um aumento de pressão ou só por uma diminuição de temperatura, o que o diferencia do vapor.
Veja Também ...



Nenhum comentário:

Postar um comentário